22

LED

with MIN level electrical sensor, transparent technopolymer

MATERIAL

Transparent polyamide based (PA-T) technopolymer. Highly resistant to shocks, solvents, oils with additives, aliphatic and aromatic hydrocarbons, petrol, naphtha, phosphoric esters.

Avoid contact with alcohol or detergents containing alcohol.

SCREWS, NUTS AND WASHERS

Zinc-plated steel.

PACKING RINGS

Step-shaped for the seal on the reservoir walls and NBR synthetic rubber O-ring screw underhead.

Suggested roughness of the packing ring application surface $Ra = 3 \mu m$.

Glass-fibre reinforced polyamide based (PA) technopolymer, black colour, with a built-in magnetic element to activate the electric contact when the float reaches the contact threshold indicated in the drawing (data referred to mineral oil type CB68, according to ISO 3498, temperature 23°C).

Floating is ensured by fluids with densities higher than 800 kg/m3.

BRACKET WITH MALE CONNECTOR

Perfectly watertight, incorporating the reed with three conductors (SW) and the LED. 8-pin M12x1 connector with threading in glassfibre reinforced polyamide based (PA) technopolymer certified selfextinguishing UL-94-VO, black colour, matte finish.

For a correct assembly see Warnings (on page -).

CONTRAST SCREEN

White lacquered aluminium. The housing, in the appropriate external rear slot, guarantees the best protection from direct contact with fluid. It can be taken out from the inclined side, before assembly to allow the insertion of level lines or words.

STANDARD EXECUTIONS

- HCV-E-NO-LD: the electrical contact closes on reaching the minimum level and the LED changes from green to red.
- HCV-E-SW-LD: the electrical change-over contact switches between the two clamps when the minimum level is reached and the LED changes from green to red.

MAXIMUM CONTINUOUS WORKING TEMPERATURE

90°C (with oil).

TECHNICAL DATA

In laboratory tests carried out with mineral oil type CB68 (according to ISO 3498) at 23°C for a limited period of time, the weld stood up to: 18 bar (HCV.76), 18 bar (HCV.127) and 12 bar (HCV.254)

For use with other fluids and under different pressure and temperature conditions, please contact ELESA Technical Department.

In any case we suggest to verify the suitability of the product under the actual working conditions.

WIRING INSTRUCTIONS

Connect the positive power supply to the Vin or Vsf pin. The Vin pin has overcurrent protection which is limited to 300mA (at 25°C).

The current at the Vsf pin input must be limited with a fuse or equivalent protection provided by the user so as not to exceed the maximum values indicated in the electrical features table.

Connect the negative power supply to pins 3, 4, 5, and 8.

When the device is not activated, i.e. the liquid level is not below the minimum level and the LED is green, the positive power supply applied to the Vin or Vsf pin will be present on the NC contact (pin 1) - only in the case of a device with a change-over contact (SW).

When the device is activated, i.e. the liquid level is below the minimum level and the LED is red, the positive power supply applied to the Vin or Vsf pin will be present on the NO contact (pin 2).

ELESA Original design

SPECIAL EXECUTIONS ON REQUEST

- Level indicators with stainless steel screws, nuts and washers.
- Level indicators HCV.76 with screws M12.
- Level indicators for use with fluids containing alcohol
- UV resistant transparent technopolymer level indicators.

FEATURES AND PERFORMANCES

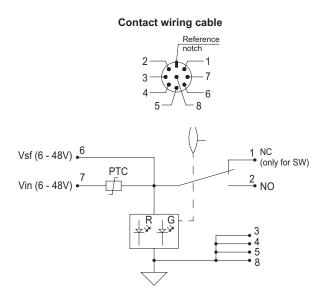
The HCV-E-LD level indicators, in addition to the visual level indicator, also provide an electrical signal when the minimum fluid level value is reached and a green or red light signal indicating the presence or absence of fluid respectively.

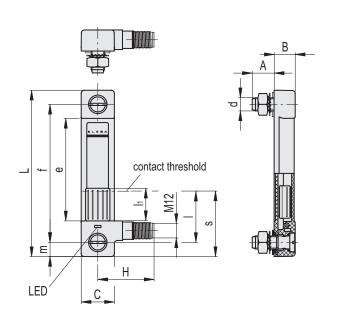
The switching of the electrical signal is simultaneous with the switching of the indicator light.

The lateral connector output allows the level of intervention of the sensor to be minimised.

Ultrasound welding to guarantee a perfect seal.

Maximum fluid level visibility even from side positions.


Lens effect for a better visibility of the fluid level.


In case of use of an extension, the direction of the cable output is shown in Fig.1.



Electrical features	MIN level sensor							
Power supply	AC/DC							
	NO normally open							
Electric contacts	SW change-over contact							
M : P II D	NO: 48 Vdc							
Maximum applicable voltage	SW change-over contact							
	1 A (Input Vsf)							
Maximum switching current	0.3A at 25°C (input Vin)							
M .	NO: 1.2A							
Maximum current	SW: 48 Vdc 1 A (Input Vsf) 0.3A at 25°C (input Vin) NO: 1.2A SW: 2A							
Maximum commutable	NO: 10 Va							
power	SW: 20 Va							
Connector	M12x1							
Do not mount this indicator in	proximity to magnetic fields.							

HCV-E-NO-LD

Code	Description	f	d	Α	В	С	н	L	е	ı	l1	m	s	d' -0.2	f' ±0.2	C# [Nm]	7,7
11067-KN	HCV.76-E-NO-M10-KN-LD	76	M10	20	19.5	30.5	47	102	43.5	40	20	13	53	10.5	76	12	99
11077-KN	HCV.127-E-NO-M12-KN-LD	127	M12	20	19.5	30.5	47	153	97	50	30	13	63	12.5	127	12	151
11087-KN	HCV.254-E-NO-M12-KN-LD	254	M12	20	19.5	30.5	47	280	224	50	30	13	63	12.5	254	12	178

HCV-E-SW-LD

Code	Description	f	d	Α	В	С	н	L	e	ı	lı	m	s	d' -0.2	f' ±0.2	C# [Nm]	7,7
11069-KN	HCV.76-E-SW-M10-KN-LD	76	M10	20	19.5 3	30.5	47	102	43.5	40	20	13	53	10.5	76	12	99
11079-KN	HCV.127-E-SW-M12-KN-LD	127	M12	20	19.5 3	30.5	47	153	97	50	30	13	63	12.5	127	12	151
11089-KN	HCV.254-E-SW-M12-KN-LD	254	M12	20	19.5 3	30.5	47	280	224	50	30	13	63	12.5	254	12	178

[#] Maximum tightening torque.

